T-79.515 Special Course on Cryptology: Privacy-Preserving Frequent Itemset Mining on Horizontally Distributed Data

نویسنده

  • Sven Laur
چکیده

This survey covers some security aspects of cooperative frequent itemset mining. We observe scenarios, where individual records of the database are distributed among different parties. All parties are willing to cooperate in order to find globally frequent itemsets, but they do not want to reveal too much information. The survey examines one possible solution proposed in article [KC02], but an alternative based on Benaloh’s protocol [Ben87] is briefly discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Personalized Privacy-Preserving Frequent Itemset Mining Using Randomized Response

Frequent itemset mining is the important first step of association rule mining, which discovers interesting patterns from the massive data. There are increasing concerns about the privacy problem in the frequent itemset mining. Some works have been proposed to handle this kind of problem. In this paper, we introduce a personalized privacy problem, in which different attributes may need differen...

متن کامل

Multi-objective optimization based privacy preserving distributed data mining in Peer-to-Peer networks

This paper proposes a scalable, local privacy-preserving algorithm for distributed peer-to-peer (P2P) data aggregation useful for many advanced data mining/analysis tasks such as average/sum computation, decision tree induction, feature selection, and more. Unlike most multi-party privacy-preserving data mining algorithms, this approach works in an asynchronous manner through local interactions...

متن کامل

Privacy-Preserving Frequent Itemset Mining for Sparse and Dense Data

Frequent itemset mining is a task that can in turn be used for other purposes such as associative rule mining. One problem is that the data may be sensitive, and its owner may refuse to give it for analysis in plaintext. There exist many privacy-preserving solutions for frequent itemset mining, but in any case enhancing the privacy inevitably spoils the efficiency. Leaking some less sensitive i...

متن کامل

CS 730R: Topics in Data and Information Management

1. Summary. In this paper the authors propose a differentially privacy preserving algorithm for mining frequent itemset. This work differs from the other privacy preserving miners present in literature, indeed this algorithm mines the itemset by enforcing cardinality constraints on the transactions present in the dataset. In particular the authors study how the reduction the cardinality of the ...

متن کامل

Privacy-preserving algorithms for distributed mining of frequent itemsets

Standard algorithms for association rule mining are based on identification of frequent itemsets. In this paper, we study how to maintain privacy in distributed mining of frequent itemsets. That is, we study how two (or more) parties can find frequent itemsets in a distributed database without revealing each party’s portion of the data to the other. The existing solution for vertically partitio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004